0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Analysis of the Hyalinization Reaction in Otosclerosis

Erik G. Nelson, MD1; Raul Hinojosa, MD1
[+] Author Affiliations
1Section of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
JAMA Otolaryngol Head Neck Surg. 2014;140(6):555-559. doi:10.1001/jamaoto.2014.427.
Text Size: A A A
Published online

Importance  Otosclerotic bone has been observed to penetrate the endosteal layer of the cochlea, resulting in direct contact with the soft-tissue structures of the inner ear. Sensorineural hearing loss has been observed in some, but not all, of these cases. The development of histologic changes occurring in the cochlear soft tissues at the site of otosclerotic endosteal penetration has been descriptively referred to as a hyalinization reaction. The role of the hyalinization reaction in the development of hearing loss is unknown.

Objective  To evaluate the composition of these hyalinized soft tissues using immunostaining techniques.

Design, Setting, and Participants  Retrospective review in a human temporal bone histopathology research laboratory of 3 specimens from patients with endosteal otosclerotic involvement.

Interventions  Evaluation of human temporal bone pathology findings.

Main Outcomes and Measures  Human temporal bone sections with endosteal otosclerotic involvement were studied using immunostaining techniques to identify collagen I, chondroitin sulfate, and keratan sulfate deposition in the hyalinization reaction tissue.

Results  Intense collagen I staining was demonstrated within the hyalinization reaction in an onionskin-like layered fashion. In addition, dual immunofluorescence-stained sections for proteoglycans revealed both chondroitin sulfate and keratan sulfate deposition in the hyalinized tissue.

Conclusions and Relevance  The tissue of the hyalinization reaction appears to be composed of collagen I, chondroitin sulfate, and keratan sulfate, which are known to act as molecular barriers. This observation suggests that the hyalinization reaction may limit the diffusion of toxic substances produced by otosclerotic bone into the soft tissues and fluids of the cochlea.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure 1.
Hematoxylin-Eosin Stained Section of the Middle Turn of the Cochlea

Extensive otosclerotic penetration of the cochlear endosteum is illustrated. A hyalinization reaction (arrowheads) is present in the spiral ligament adjacent to areas of direct exposure to otosclerotic bone. OB indicates otosclerotic bone; SL, spiral ligament; SV, stria vascularis.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Immunofluorescence-Stained Section Adjacent to the Section Pictured in Figure 1

Confocal microscopy of immunofluorescence staining for collagen I demonstrating intense brightness (green, arrowheads) within the hyalinization reaction in an onionskin-like layered fashion. Autofluorescence appears yellow. OB indicates otosclerotic bone; SL, spiral ligament; SV, stria vascularis.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Dual Immunofluorescence-Stained Tissue Section Adjacent to Section in Figure 1

Confocal microscopy of dual immunofluorescence-stained section for proteoglycans revealing both chondroitin sulfate deposition (green) and keratan sulfate deposition (red) in the hyalinized tissue (arrowheads). OB indicates otosclerotic bone; SL, spiral ligament.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();