Surgery and Functional Outcomes in Deaf Children Receiving Cochlear Implants Before Age 2 Years

S. S. Hehar, FRCS; Thomas P. Nikolopoulos, MD, DM, PhD; Kevin P. Gibbin, FRCS; Gerard M. O’Donoghue, FRCS

Objective: To examine the feasibility of cochlear implantation in children younger than 2 years regarding surgery and functional outcomes.

Design: Prospective study.

Setting: Tertiary pediatric cochlear implant center.

Patients: A consecutive sample of 12 children younger than 2 years at the time of cochlear implantation (8 boys and 4 girls). The cause of hearing loss was meningitis in 6 children and congenital in 6.

Interventions: Multichannel cochlear implantation using the Nucleus C124M (Cochlear Co, Sydney, Australia) device. Functional outcome was assessed using the Listening Progress Profile and the Categories of Auditory Performance.

Main Outcome Measures: Perioperative and postoperative surgical complications and functional outcome.

Results: Eight children had a completely patent cochlea. Four children required a 3- to 5-mm drilling to reach the scala tympani because of ossification after meningitis. Full insertion was achieved in 11 patients; the other child received 18 electrodes. One patient had temporary facial nerve weakness; 2 others had wound edema and serous discharge that resolved with conservative management. In the longer term, 1 child experienced a single episode of acute otitis media; another had recurrent episodes of otitis media. Mean Listening Progress Profile scores increased from 1 to 42 and median Categories of Auditory Performance scores increased from 0 to 5 at 2 years postsurgery. Comparison with the scores in the 2- to 5-year group showed no significant differences. No significant tuning difficulties were experienced with all children.

Conclusions: Cochlear implantation is feasible in children younger than 2 years without significant surgical complications or particular tuning difficulties. Functional results 2 years after implantation were as good as or better than those of children who underwent implantation between ages 2 and 5 years.


IN 1995 the US National Institutes of Health Consensus Conference on Cochlear Implants1 lowered the age limit to 2 years for cochlear implantation. The major concerns in relation to implantation in younger children include: (1) the relatively small size of the skull and its growth in young children, with potential surgical difficulties of access and a possible increase in surgical risk (later complications of electrode displacement); (2) the high prevalence of otitis media in this age group and its subsequent related complications; and (3) difficulties in rehabilitation.

There is evidence2 that insufficient auditory stimulation during critical periods of development leads to linguistic and communicative deficits. Thus, it seems logical that the earlier a child with hearing loss receives an implant the better the outcome. Therefore, the age limit of 2 years for cochlear implantation may be unnecessarily restrictive. The aim of this study was to assess the feasibility of surgery, the postoperative complications, and the functional outcomes in children who undergo implantation before age 2 years.

RESULTS

SURGERY

The incisions used did not differ from those used in adults: an extended endaural or postauricular incision. The pericranium was raised with the flap, and after performing a cortical mastoidectomy, a bed (bony well) was drilled for the receiver-stimulator unit. There was considerable variation in the thickness of the skull, although exposure of the dura was necessary in 9 of 12 patients for the implant to be comfortably and securely countersunk in a bony well of ad-
PATIENTS, MATERIALS, AND METHODS

A prospective study was undertaken of 12 children (8 boys and 4 girls) who underwent implantation before age 2 years. All children were profoundly deaf, and radiological assessment was undertaken using magnetic resonance imaging. Age at implantation ranged from 17 to 23 months (mean, 20.5 months). Duration of hearing loss ranged from 8 to 23 months (mean age, 17.9 months). The cause of deafness was meningitis in 6 children and congenital in the other 6. Characteristics of all the children studied are given in the Table. Children were assessed prospectively regarding surgical difficulties and postoperative complications, tuning difficulties, and functional outcome. Follow-up ranged from 4.0 months to 4.4 years (mean, 2.2 years).

Functional outcome was assessed using the Listening Progress Profile and the Categories of Auditory Performance. These outcome measures were chosen because they are age appropriate for these children and are sensitive monitors of the progress of audition in young children as early as 6 months after implantation. The results were compared with those of children who received an implant between ages 2 and 5 years. Statistical analysis was performed using the t test for unpaired observations for normal distributions and the Mann-Whitney test for nonparametric distributions.

equate depth. Posterior tympanotomy and cochleostomy anteroinferior to the round window were performed in the usual way. The facial nerve was not exposed in 11 patients, and in 1 patient the sheath of the nerve was exposed. In all children, the Nucleus CI24M device (Cochlear Co, Sydney, Australia) was used. After insertion of the electrode array, the receiver-stimulator unit was secured in its bed using a nonabsorbable polypropylene (prolene) or synthetic absorbable suture (Vicryl) suture. Additional fixation of the electrode array was achieved using cement at the posterior tympanotomy and synthetic polyester passed through holes drilled at the margin of the cortical mastoidectomy. Small pieces of muscle were then placed around the electrode array in the cochleostomy to effect a seal. Stapedius reflex levels were measured to obtain an approximate estimate of the upper comfort levels for the implant; integrity testing, electrically evoked brainstem responses, and neural response telemetry were also performed. Closure was in 2 layers using subcuticular suture Vicryl to avoid the need for suture removal. A mastoid dressing was applied overnight, and a reverse Stenvers radiograph was taken the following day to check the position of the device. Initial stimulation of the implant was undertaken after roughly 4 weeks.

Eight of the 12 children had a completely patent cochlea. In 4 children, a 3- to 5-mm drilling was needed for access to the scala tympani because of cochlear ossification. Full insertion was accomplished in 11 children; in 1 child, 18 electrodes were inserted. Nine children did not encounter any surgical complications. One developed facial nerve weakness after surgery (House-Brackmann scale II to III) that was treated with corticosteroid and antibiotic therapy and subsequently returned to normal (House-Brackmann scale I). Two other patients developed minor complications (edema and oozing from the wound) which were managed conservatively. During follow-up, 10 of 12 children did not encounter problems. One child had an episode of acute otitis media 6 months after surgery that resolved with antibiotic therapy, and the child did not experience any other infections for the following 3 years and 10 months (until the time of the study). The other child experienced recurrent episodes of otitis media that did not resolve with adenoidectomy and prophylactic low-dose antibiotic therapy, so a grommet was inserted 18 months after surgery. The child still wears the cochlear implant, showing substantial progress in auditory perception skills. No children experienced device migration or dislodgment of the electrode array.

POSTOPERATIVE FUNCTIONAL OUTCOME

The mean (median) preoperative Listening Progress Profile score was 1 (0). The mean (median) score increased to 28 (27) at 6 months, 38 (39) at 12 months, and the maximum of 42 (42) at 24 months. The respective scores in the group of children who received an implant between ages 2 and 5 years were 1 (0), 30 (31), 37 (40), and 41 (42). Regarding the Categories of Auditory Performance (minimum score, 0; maximum score, 7), the median (mean) score before implantation was 0 (0.2). The median (mean) score increased to 4 (3.8) at 6 months, 5 (4.6) at 12 months, and 5 (5.6) at 24 months. The respective scores in the 2- to 5-year-olds were 0 (0.2), 4 (3.4), 4 (4.2), and 5 (5.0). Statistical comparisons between the 2 groups did not reveal any significant differences.

COMMENT

In the United Kingdom, approximately 220 children are born every year with hearing loss in excess of 95 dB, with an additional 80 children losing their hearing later, usually because of bacterial meningitis. Many of these children cannot derive benefit from hearing aids and therefore are candidates for cochlear implantation, which may help them develop considerable speech perception and speech production abilities. However, several factors affect when these children should undergo implantation.

Of great importance is the issue of neural plasticity. Results of animal studies suggest that initial auditory activation of the brain leads to establishment of an intricate network linking the primary auditory cortex with second-
ary, tertiary, and associated areas of the brain. During the first postnatal week in the white rabbit, dendritic length increases 4-fold, and at the onset of hearing there is substantial proliferation of dendrites and branches that may reach 200% of adult levels, followed by a more gradual loss to 100% of adult levels.28-31 Although a vertical orientation of dendrites is present at birth in the white rabbit, the onset of hearing is associated with an explosive elaboration of dendrites toward the pial surface.32 Deafness may have various effects on neuronal connectivity within the auditory pathway, and the changes in cochlear nucleus cell size in animals were correlated with duration of deafness.32-34 Removal of the cochlea in young mice, gerbils, and chicks results in severe transneuronal degeneration, whereas there is little or no change in adult animals.27 However, this degeneration does not seem to directly correspond to any features specific to auditory system development, and it was found to be similar in different developmental stages, suggesting that other general systemic factors besides neuroplasticity may cause the differential susceptibility in young animals.21 These experiments highlight the complexity of these issues and the fact that the biological mechanisms underlying such phenomena have not yet been defined.

Results of developmental studies22-25 in humans indicate that there are critical or sensitive periods during which the developing central nervous system can most readily use sensory information to form linguistic structure. These periods may vary according to the different elements of language: for phonetic factors, 6 months of fetal life through age 12 months; for syntax, up to age 4 years; and for semantics, up to age 16 years.2

In addition to the possible existence of critical periods for language learning, there is a complementary argument supporting the importance of young age at implantation. The rate of language development in profoundly deaf children with implants exceeds that expected in deaf children without implants,13,26 and the gap between chronological age and language age that usually widens over time in deaf children without implants remains constant after implantation.27 Consequently, the earlier the implantation is performed, the smaller the gap will be between chronological and language age. Therefore, it is not surprising that young age at implantation is an important determinant of later functional outcome.28-31 In these studies, data were limited regarding children who received implants before age 2 years; therefore, there is a compelling need for studies involving such children.

Progressive cochlear ossification after meningitis is a concern that has led many otologists to believe that such children should be “fast-tracked.” Ossification can take place as early as 2 months after meningitis.32 When early children should be “fast-tracked.” Ossification can take a concern that has led many otologists to believe that such compelling need for studies involving such children. received implants before age 2 years; therefore, there is a concern that has led many otologists to believe that such compelling need for studies involving such children.

In addition to the possible existence of critical periods for language learning, there is a complementary argument supporting the importance of young age at implantation. The rate of language development in profoundly deaf children with implants exceeds that expected in deaf children without implants,13,26 and the gap between chronological age and language age that usually widens over time in deaf children without implants remains constant after implantation.27 Consequently, the earlier the implantation is performed, the smaller the gap will be between chronological and language age. Therefore, it is not surprising that young age at implantation is an important determinant of later functional outcome.28-31 In these studies, data were limited regarding children who received implants before age 2 years; therefore, there is a compelling need for studies involving such children.

Progressive cochlear ossification after meningitis is a concern that has led many otologists to believe that such children should be “fast-tracked.” Ossification can take place as early as 2 months after meningitis.32 When early children should be “fast-tracked.” Ossification can take a concern that has led many otologists to believe that such compelling need for studies involving such children. received implants before age 2 years; therefore, there is a concern that has led many otologists to believe that such compelling need for studies involving such children.

In addition to the possible existence of critical periods for language learning, there is a complementary argument supporting the importance of young age at implantation. The rate of language development in profoundly deaf children with implants exceeds that expected in deaf children without implants,13,26 and the gap between chronological age and language age that usually widens over time in deaf children without implants remains constant after implantation.27 Consequently, the earlier the implantation is performed, the smaller the gap will be between chronological and language age. Therefore, it is not surprising that young age at implantation is an important determinant of later functional outcome.28-31 In these studies, data were limited regarding children who received implants before age 2 years; therefore, there is a compelling need for studies involving such children.

Progressive cochlear ossification after meningitis is a concern that has led many otologists to believe that such children should be “fast-tracked.” Ossification can take place as early as 2 months after meningitis.32 When early children should be “fast-tracked.” Ossification can take a concern that has led many otologists to believe that such compelling need for studies involving such children. received implants before age 2 years; therefore, there is a concern that has led many otologists to believe that such compelling need for studies involving such children.
dren, and there are doubts about whether these tests are appropriate for such a young population, especially at the early intervals after implantation.

The present study used outcome measures designed for such young children and compared children who received implants before age 2 years with children who received implants between ages 2 and 5 years. However, it is a common weakness for outcome studies not to have the same numbers of children at all intervals, and these numbers usually decrease at subsequent follow-up. The present study was not an exception, although mean follow-up was 2.2 years. The results (means and medians) reveal that children who received implants before age 2 years showed considerable progress in auditory perception after implantation, matching the progress of children in the older age group. Although various difficulties may arise in tuning and rehabilitation regarding such young children, we did not experience any particular problems in these areas, perhaps because the professionals involved had substantial experience with young children. Moreover, the outcomes, at all intervals up to 2 years after implantation, were comparable with those in children who underwent implantation between ages 2 and 5 years. This becomes more important taking into consideration that younger children usually perform worse on auditory tests and scales at the first intervals after implantation and catch up and surpass the older children after 2 years of implantation. Therefore, it is encouraging that children who received implants before age 2 years in the present series had no difference from the older children so early after implantation. It will be interesting to see if, in the long term, the younger children will surpass the older children with implants.

In conclusion, this study shows encouraging results in the cochlear implantation of children younger than 2 years. The feasibility of surgery has been demonstrated, with no significant complications and good early results of tuning and rehabilitation. Further long-term follow-up is required to demonstrate improved outcome of these children in comparison to older children undergoing cochlear implantation.

Accepted for publication August 24, 2001.

We thank the professionals (audiologists, scientists, teachers for the deaf, and speech and language therapists) of the Nottingham Cochlear Implant Programme for their valuable contribution in the assessment and management of the children studied.

Corresponding author: Thomas P. Nikolopoulos, MD, DM, PhD, Department of Otolaryngology, University Hospital, Queen’s Medical Center NHS Trust, Nottingham NG7 2UH, England (e-mail: Thomas.Nikolopoulos@nottingham.ac.uk).

REFERENCES