Targeted Molecular Therapy for Oral Cancer With Epidermal Growth Factor Receptor Blockade

A Preliminary Report

Jeffrey N. Myers, MD, PhD; F. Christopher Holsinger, MD; B. Nebiyou Bekele, PhD; Emily Li, DDS; Samar A. Jasser, BA; Jerald J. Killion, PhD; Isaiah J. Fidler, DVM, PhD

Background: Overexpression of epidermal growth factor receptor (EGF-R) is associated with increased malignant potential and correlates with poor clinical outcome in head and neck cancer. Therefore, inhibition of the EGF-R pathway provides an ideal target for molecular therapy. We examined in vitro and in vivo effects of PKI166, an orally administered EGF-R inhibitor, on 2 human squamous cell carcinoma of the oral cavity cell lines, Tu159 and MDA1986.

Study Design: Basic science, laboratory investigation.

Results: For Western blotting, Tu159 and MDA1986 cells were pretreated for 1 hour and then stimulated with EGF. The EGF-R–specific tyrosine kinase autophosphorylation was inhibited completely by PKI166 at all doses tested (1-10 µg/mL). By means of a tetrazolium-based viable cell assay, PKI166 was shown to arrest the growth of Tu159 and MDA1986 cells. The inhibitory concentration (50%), calculated from regression lines on the linear portion of the growth inhibition graphs, was 0.18µM (R=0.98) for Tu159 cells and 0.23µM (R=0.97) for MDA1986 cells. Nude mice were inoculated subcutaneously with 1 × 10⁶ Tu159 tumor cells and observed for 7 days. Next, daily doses of PKI166 (0, 10, or 50 mg/kg) were delivered by orogastric lavage for 28 days and the animals were observed for tumor growth. PKI166 significantly reduced tumor growth in mice treated for 1 month with oral PKI166 in a dose-dependent fashion.

Conclusions: Targeted molecular therapy with EGF-R blockade arrests the growth of oral cancer in vitro and reduces its proliferation in an experimental xenograft animal model.

IN 2002, SQUAMOUS cell carcinoma of the head and neck (HNSCC) is predicted to account for nearly 40000 new cancers in the United States, equal in incidence to leukemia and greater than all endocrine tumors.1 Worldwide, cancers of the oral cavity and pharynx represent an even greater public health problem, responsible for almost 200 000 deaths annually.2 Squamous cell carcinoma of the oral cavity (SCCC) accounts for nearly 50% of all newly diagnosed cancers in India and is a leading cause of cancer death in France.2 Despite improvements in locoregional control, morbidity and mortality rates have improved little during the past 30 years.3 Targeted molecular therapy offers an exciting new approach to treat human malignancy.4 The tyrosine kinase inhibitor STI-571 has shown promise in early clinical trials for the treatment of chronic myeloid leukemia.5 Its success highlights the potential for anticancer drugs based on the specific molecular abnormality present in a human cancer.

The epidermal growth factor receptor (EGF-R) pathway provides an attractive target for molecular therapy for HNSCC. Overexpression of the EGF-R correlates with a poor outcome in patients with HNSCC6 and other human epithelial tumors.7 The EGF-R is a 170-kd transmembrane glycoprotein consisting of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular domain with intrinsic tyrosine kinase activity.8,9 Once activated, the EGF-R intracellular domain phosphorylates both the receptor itself and several crucial second messenger effector molecules.10 Activation of this signaling pathway triggers DNA synthesis and a mitogenic cascade, resulting in cell proliferation.11,12 Therefore, inhibition of the EGF-R pathway and its tyrosine kinase signaling activity may provide an ideal target for the molecular treatment of HNSCC.

Several strategies have been developed to block the EGF-R. These include antisense technology, ligand-linked toxins, monoclonal antibodies, and small-
molecule tyrosine kinase inhibitors. A phase 1 clinical trial recently demonstrated the safety and preliminary efficacy of the monoclonal antibody preparation C225.13 PKI166 is a newly identified, low-molecular-weight EGF-R tyrosine kinase inhibitor that is administered orally.14 PKI166 not only inhibited tumor growth in an orthotopic model of human pancreatic adenocarcinoma but also induced apoptosis in tumor-associated endothelial cells.15 Although a handful of in vitro studies have examined the role of EGF-R tyrosine kinase inhibitors in HNSCC,16,17 to our knowledge, no confirmation in an experimental animal model has been reported. We present a preclinical evaluation of an EGF-R tyrosine kinase inhibitor and its antitumor effects on in vitro and in vivo proliferation of human SCCOC.

RESULTS

INHIBITION OF EGF-R AUTOPHOSPHORYLATION IN HUMAN SCCOC

In our first experiment, we determined whether treatment of Tu159 and MDA1986 cells with PKI166 could inhibit EGF-stimulated tyrosine phosphorylation of the EGF-R. Tu159 and MDA1986 cells, incubated 15 minutes with serum-free medium but containing EGF, exhibited high levels of autophosphorylated EGF-R as detected by antiphosphotyrosine antiserum on Western blots of anti-EGF-R-immunoprecipitated cell lysates. Next, pretreatment of cells with PKI166 for 60 minutes, followed by a 15-minute treatment with EGF, inhibited the autophosphorylation in a dose-dependent manner (0–10 µg/mL). Expression of the 170-kd EGF-R protein was found to be down-modulated by the addition of EGF in the absence of PKI166. Receptor autophosphorylation was found to be maximal under these conditions, and the EGF-R-specific tyrosine autophosphorylation was inhibited completely by PKI166 at all doses tested (1–10 µg/mL) in both cell lines (Figure 1 and Figure 2).

MEDIATION OF IN VITRO CYTOTOXICITY OF SCCOC

Tu159 and MDA1986 cells were incubated for 5 days in medium, either with or without PKI166. As seen in
PKI166 was tested against the Tu159 and MDA1986 cell lines by means of an MTT-based assay. The MTT assay measures cell proliferation, based on the ability of living cells to use MTT and convert it into dark-blue formazan.50 One thousand cells were plated into 38-mm2 wells of 96-well tissue culture plates. The cells were grown in Dulbecco modified Eagle medium supplemented with sodium pyruvate, essential amino acids, and 10% fetal bovine serum. After a 24-hour attachment period, the cells were refed with medium (negative control with dimethyl sulfoxide alone) or medium containing PKI166. After a 5-day incubation, the number of metabolically active cells was determined by MTT assay. The conversion of MTT to formazan by metabolic actively cells was measured by a 96-well microtiter plate reader at an optical density at 570 nm (MR-5000; Dynatech Laboratories Inc, Chantilly, Va). Growth inhibition was calculated from the following formula: cytostasis (%) = [(1 – (A/B)) × 100], where A is the absorbance of treated cells and B is the absorbance of control cells.

IN VIVO TUMOR XENOGRAFTS

Tu159 cells were harvested from subconfluent cultures by a brief exposure to 0.25% trypsin and 0.02% edetic acid. Trypsinization was reversed with the addition of medium containing 10% fetal bovine serum, and the cells were washed once in serum-free medium and resuspended in Hank's balanced saline solution. Tumor cells were then implanted subcutaneously in the flanks of nude mice at a concentration of 1 × 106 cells per mouse. One week elapsed, at which time subcutaneous tumors could be palpated. The mice were then treated for 28 days with daily oral doses of 0, 10, or 50 mg of PKI166 per kilogram. Tumor sizes were measured by calipers and recorded weekly. Measurements were recorded as the products of the length and width of tumors.

STATISTICS

Sigma Plot software (SPSS Science, Chicago, Ill) was used to calculate the inhibitory concentration (30%) (IC30) by means of equations based on an exponential rise algorithm. SPSS software (SPSS Science) was used for statistical analysis. A repeated-measures regression analysis was used to assess the effects of time, dose, and time × dose interaction on growth of in vivo tumor Tu159 xenografts in mice. The primary analysis was a repeated-measures analysis. Repeated-measures analysis was performed on the log-transformed data to mitigate skewness observed in the tumor volume data. Repeated-measures analysis was also performed on the original data and on the square root–transformed data to ensure consistent inferences. The effects in the model were assessed at a significance level of .05. All computations were carried out on a DELL personal computer (DELL Computer Corp, Austin, Tex) with Windows NT operating system (Microsoft Corp, Redmond, Wash) and using the SAS Proc Mixed procedure (SAS Institute Inc, Cary, NC).

COMMENT

Blockade of the EGF-R signaling pathway by the novel tyrosine kinase inhibitor PKI166 suppressed the growth of human SCCOC. PKI166 specifically inhibited the autophosphorylation mediated by the EGF-R tyrosine kinase pathway, as measured by Western blotting. Furthermore, the in vitro cytotoxicity of PKI166 on 2 SCCOC cell lines was confirmed by MTT assay. Finally, we present the first report, to our knowledge, of in vivo suppression of SCCOC tumor growth in an experimental animal model using oral tyrosine kinase inhibitor–EGF-R blockade.

The proliferation of HNSCC has been correlated with increased expression of EGF-R and its ligands, EGF and...
The crucial biological activity of EGF-R pathway inhibition may be derived from its ability to suspend cell proliferation. Blockade of the EGF-R signaling pathway antibody variable regions are linked to human constant regions exhibited an improved in vivo therapeutic effect at high doses. These promising results with C225 led to phase 1 and 2 clinical trials that are now under way. The use of an orally administered compound that inhibits the proliferation of HNSCC has several advantages over treatment with receptor-specific antibodies. These advantages include drug availability, no immunologic reactivity, and direct intracellular effects on EGF-R. Phase 1 trials are currently under way to assess the pharmacokinetic bioavailability and toxicity of PKI166. Early reports suggest that this class of compounds has low levels of systemic toxic effects, limited to fatigue, nausea, and rash. The most common complications from monoclonal antibody therapy targeted at EGF-R signaling were fever, asthenia, elevation of amiotransferase levels, nausea, and rash.

The crucial biological activity of EGF-R pathway inhibition may be derived from its ability to suspend cell proliferation. Blockade of the EGF-R signaling pathway transforming growth factor α (TGF-α). The HNSCCs express higher levels of EGF-R and TGF-α than corresponding normal tissues. Furthermore, the concomitant expression of both EGF-R and its ligand TGF-α suggests that an autocrine control mechanism may be important in the development of these tumors. In head and neck cancer, overexpression of EGF-R and TGF-α has been shown to correlate with aggressive malignant progression and poor clinical outcome.

Targeted molecular therapy for HNSCC has focused on the use of anti-EGF-R antibody preparations. Tumor proliferation in cell culture and tumor xenografts in athymic mice have been inhibited by these antibodies, which block EGF binding to EGF-R. When injected into mice bearing tumor xenografts, mouse anti-EGF-R antibody preparations can cause partial tumor regression. The addition of concomitant chemotherapeutic agents (cisplatin or doxorubicin) is necessary for a more complete tumor response. A chimeric version of the 225 monoclonal antibody (C225) in which the mouse
results in cellular arrest at the G1 restriction point, which has been shown to increase sensitivity to cytotoxicity mediated by radiation or chemotherapeutic agents.31 While halted by EGF-R inhibition, cancer cells may be more susceptible to concomitant cytotoxic agents (paclitaxel or cisplatin) and adjuvant radiotherapy. Studies are under way in our laboratory to evaluate the efficacy of PKI166 when given in combination with paclitaxel, with the use of an orthotopic nude mouse model of oral cancer.32

In summary, the blockade of the EGF-R signaling pathway with a tyrosine kinase inhibitor arrests the growth of oral cancer in vitro and reduces its proliferation in an experimental xenograft animal model. These preliminary results require further confirmation with an orthotopic model of oral cancer as well as preclinical studies to determine the safety of tyrosine kinase inhibitors in humans. These studies are now under way in our laboratory.

Accepted for publication January 18, 2002.

This study was presented at the Fifth International Conference on Head and Neck Cancer, San Francisco, Calif, July 31, 2000.

Corresponding author and reprints: Jeffrey N. Myers, MD, PhD, Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 441, Houston, TX 77030-4009 (e-mail: jmyers@mdanderson.org).

REFERENCES