Up-regulation of the Mucosal Epidermal Growth Factor Receptor Gene in Chronic Rhinosinusitis and Nasal Polyposis

Guo Qiang Ding, MD; Chun Quan Zheng, MD; Shelly S. Bagga

Objectives: To investigate the expression of epidermal growth factor receptor (EGFR) messenger RNA (mRNA) in human sinus mucosa and to compare the expression of EGFR and EGF among patients with chronic rhinosinusitis (CRS), patients with CRS and nasal polyps (CRS/NP), and a healthy control group.

Design: Maxillary sinus ostia mucosa was harvested from patients undergoing endoscopic sinus surgery for CRS or CRS/NP and from patients undergoing surgery for non-CRS pathologic conditions (control group). The samples were analyzed using semiquantitative reverse transcription–polymerase chain reaction to detect mRNA of EGFR. Hematoxylin-eosin staining and immunofluorescent staining were used to localize EGFR and EGF in the sinus mucosa.

Setting: Academic research.

Participants: Three groups (CRS, CRS/NP, and control), each with 10 subjects, were enrolled in the present study.

Main Outcome Measures: Area ratios of positive cells in the epithelia were compared among the CRS, CRS/NP, and control groups. In addition, eosinophils were counted in the subepithelial connective tissue in the 3 groups.

Results: The level of EGFR mRNAs in the sinus mucosa of the CRS and CRS/NP groups was statistically significantly increased compared with that in the control group ($P < .01$), and no statistically significant difference was found between the sinus mucosa of the CRS group and that of the CRS/NP group ($P < .01$). On hematoxylin-eosin staining, hyperplasia and metaplasia of epithelial goblet cells were present in the sinus mucosa of the CRS and CRS/NP groups. Epidermal growth factor receptor was mainly expressed in goblet cells and basal cells and was weakly expressed in ciliated cells, while EGF expression was located in epithelial cells and in some inflammatory cells but not in goblet cells. In the control group, expression of EGFR and EGF was lower compared with that in the CRS and CRS/NP groups. No statistically significant area ratios of positive cells differences in staining of EGFR and EGF were found between the CRS group and the CRS/NP group ($P > .05$), whereas statistically significant differences were found between the control group and the 2 CRS groups ($P < .01$). The number of eosinophils was statistically significantly increased in the CRS/NP group compared with that in the CRS group ($P < .01$).

Conclusion: Up-regulation of the EGFR cascade may have an important role regarding mucus production in the sinus mucosa of patients with CRS and CRS/NP associated with hyperplasia and metaplasia of epithelial goblet cells.

the EGFR signaling pathway can promote the secretion of mucins such as MUC5AC and MUC5B and that blockade of the EGFR cascade may provide potential treatment for mucous hypersecretion disease states.

Because most studies have focused on the expression of the EGFR gene in the lower respiratory tract, we know little about the expression of EGFR in disease states such as chronic rhinosinusitis (CRS) and CRS and nasal polyposis (CRS/NP). The objective of this study was to explore the role of the EGFR cascade in the upper respiratory tract by evaluating patients with CRS and CRS/NP. We investigated the expression of EGFR messenger RNA (mRNA) in the sinus mucosa of healthy control subjects and in patients diagnosed as having CRS or CRS/NP using reverse transcription–polymerase chain reaction (RT-PCR), evaluated these samples using hematoxylin-eosin (HE) staining, and used immunofluorescent staining to localize EGFR and EGF. In addition, eosinophils were counted in the 3 groups to distinguish the differences related to the presence of a pathologic condition.

METHODS

SUBJECTS AND SAMPLE COLLECTION

Patients enrolled were previously diagnosed as having CRS or CRS/NP and were advised to undergo therapeutic functional endoscopic sinus surgery on the basis of their medical history, confirmed by computed tomography and nasal endoscopy. Each subject gave permission after informed consent using a commercially available software (Quantity One; Bio-Rad Laboratories, Inc). We determined the relative intensity of individual bands on a gel image as the ratio of the intensity of EGFR to the intensity of GAPDH. The negatives were scanned using a densitometer (GS-700TM Imaging; Bio-Rad Laboratories, Inc), and the signal was analyzed using commercially available software (ImageQuant; Amersham Biosciences, Piscataway, New Jersey).

HE STAINING AND IMMUNOFLOUORESCENT STAINING

Hematoxylin-eosin staining and immunofluorescent staining were performed using optical cutting temperature medium–embedded sections. Samples were cut into 5-µm sections using a freezing microtome (CM3050S; Leica Microsystems, Nussloch, Germany). Hematoxylin-eosin staining was performed per standard protocols: cell nuclei were stained by hematoxylin, and cell plasma was stained by eosin. Results were observed using a light microscope (DMLS; Leica Microsystems). For immunofluorescent staining of EGFR and EGF, we used rabbit polyclonal anti-human EGFR and EGF antibodies (working dilution, 1:200; Santa Cruz Biotechnology, Inc, Santa Cruz, California). Sections were washed 3 times with 0.01M PBS, then blocked in 10% goat serum for 1 hour at room temperature, and then incubated with the primary antibody overnight at 4°C. The sections were then washed and incubated for 1 hour at 37°C with a fluorescein isothiocyanate–labeled goat antirabbit IgG antibody (working dilution, 1:100; KPL, Inc, Gaithersburg, Maryland). For the negative control, 0.1M PBS was used instead of the primary antibody. Immunostaining was visualized using a fluorescence microscope (DMR30; Leica Microsystems). The immunoreactivity within the different cells was scored for immunoreactivity as strongly positive, moderately positive, weakly positive, or negative.

According to the immunoreactivity, we analyzed area ratios of positive cells (ARPCs) in the epithelia. From each group, 10 samples of sections were randomly selected. Ten fields at high magnification (×200) were observed in each sample. Using ImageQuant software, we measured the whole area of epithelia and the area of positive cells in the epithelia and then calculated the ARPC in the epithelia and obtained the mean value.
and CRS/NP groups, the sinus mucosa showed strong ex-
amplified EGFR mRNA (RT-PCR screening of normal sinus mucosa revealed weakly
specimens contained mRNA encoding for EGFR. The RT-
quantitative Analysis; Qiuwei Inc, Shanghai, China). Ten samples
using commercially available software (Medical Image Quan-
blindly examined relative to the clinical data.
connective tissue, sections stained with HE were coded and were
mens. To count the number of eosinophils in the subepithelial
obtained the mean number for this sample. After completing
all samples of each group, we calculated the mean number of
eosinophils for each group.

QUANTITATIVE ASSESSMENT OF EOSINOPHILS

Sections stained with HE were examined using the light mi-
scope under magnification (× 400) to obtain a general im-
pression of the histopathologic features of the examined speci-
Ms. To count the number of eosinophils in the subepithelial
connective tissue, sections stained with HE were coded and were
blindly examined relative to the clinical data.
The field was oriented along the whole length of the epi-
thelium basement membrane. The counting was carried out
using commercially available software (Medical Image Quan-
titative Analysis; Qiuwei Inc, Shanghai, China). Ten samples
of sections were selected randomly from each group, and 5 fields
of magnification (× 400) were observed in each section. We
counted the number of eosinophils in each of the 5 fields and
obtained the mean number for this sample. After completing
all samples of each group, we calculated the mean number of
eosinophils for each group.

STATISTICAL ANALYSIS

Statistical analysis was performed using commercially avail-
ble statistical software (SPSS11.5; SPSS Inc, Chicago, Illi-
inois). Data are expressed as mean ± SD. The Mann-Whitney test
was used to analyze for differences in each of EGFR-GAPDH
ratios among the 3 groups, and analysis of variance and Student-
Newman-Keuls test were used to assess for differences in ARPCs
of EGFR and EGF and for differences in counted eosinophils
among the 3 groups. Different cell types expressed for EGFR
and EGF were compared using row mean scores difference test.
P < .01 was considered a statistically significant difference.

RESULTS

RT-PCR OF EGFR

The RT-PCR examination showed that sinus mucosa
specimens contained mRNA encoding for EGFR. The RT-
PCR screening of normal sinus mucosa revealed weakly
amplified EGFR mRNA (Figure 1). However, in the CRS
and CRS/NP groups, the sinus mucosa showed strong ex-
pression of EGFR. The EGFR/GAPDH mRNA ratio in the
sinus mucosa of the CRS and CRS/NP groups was sta-
tistically significantly increased compared with that in
the control group (P < .01), and no statistically signifi-
cant difference in the ratio was found between the sinus
mucosa of the CRS group and that of the CRS/NP group
(P < .01) (Figure 2). The PCR products extracted from the
CRS and CRS/NP mucosa were 483 base pair (bp) for
EGFR (Figure 1), which was expected given the se-
lected primers. The internal control showed 271-bp bands
for GAPDH not only in all the inflamed sinus mucosa but
also in normal sinus mucosa. For the negative control
RT-PCR, EGFR mRNA was not expressed.

LOCALIZATION OF EGFR AND EGF
IMMUNOREACTIVITIES

On HE staining, the epithelium of normal sinus mucosa
demonstrated a pseudostratified ciliated columnar epi-
thelium with interspersed goblet cells, as well as non-
ciliated and basal cells. As expected, an orderly ciliary
arrangement was present with no inflammatory cell in-
vasion. The epithelium in CRS and CRS/NP samples was
different compared with that in the normal mucosa
samples, demonstrating mucosal hypertrophy, hyper-
plasia, and metaplasia of epithelial goblet cells and sub-
mucosal glandular cells. Absence of partial cilia, as well
as a large number of inflammatory cells such as plasma
cells, lymphocytes, macrophages, and eosinophils, was
noted in CRS and CRS/NP sinus mucosa (Figure 3). Fur-
thermore, edema was found in submucosal tissue, espe-
cially in the submucosal glands of the CRS/NP group.

The level of expression of EGFR and EGF in different
cell types was analyzed by immunofluorescent staining,
the results of which are summarized in Table 1. Posi-
tively immunostained cells appeared green. In CRS and
CRS/NP mucosa, EGFR immunoreactivity was abundant
in the sinus epithelium (Figure 4). Moderate and strong
EGFR immunoreactivity was found in goblet cells and basal

Figure 1. Expression of epidermal growth factor receptor (EGFR) messenger RNA in human sinus mucosa by reverse transcription–polymerase chain reaction (RT-PCR). The PCR products are 483 base pair (bp) for EGFR in the mucosa of patients with chronic rhinosinusitis (CRS) and patients with CRS and nasal polyposis (CRS/NP). As an internal control, 271-bp bands for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are shown in the sinus mucosa studied. Examples of RT-PCR products of EGFR and GAPDH in 2% agarose gel with ethidium bromide stain are shown. M indicates marker; −, negative control.

Figure 2. Comparison of epidermal growth factor receptor (EGFR)-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger RNA (mRNA) ratios among the sinus mucosa samples of the control, chronic rhinosinusitis (CRS), and CRS and nasal polyposis (CRS/NP) groups. Expression was statistically significantly increased in the mucosa of the CRS and CRS/NP groups compared with that in the control group (P < .01), and no statistically significant difference was found between the mucosa of the CRS group and that of the CRS/NP group (P > .05).
cells, while weak immunoreactivity was found in ciliated cells and submucosal glandular cells. The ARPCs in the epithelia were 52.3%±4.6% and 56.3%±6.6% in the CRS group and the CRS/NP group, respectively. No statistically significant difference was found between these 2 groups (P > .05) (Table 2). In the control group, EGFR immunoreactivity was barely expressed (Figure 4), and the ARPC in the epithelia (5.9%±4.3%) was statistically significantly decreased compared with that of the CRS and CRS/NP groups (P < .01) (Table 2).

The EGF immunofluorescent analysis showed strong expression in the sinus epithelial cells of the CRS and CRS/NP samples (Figure 5), including ciliated and nonciliated epithelial cells. There was no positive staining in epithelial goblet cells, but some inflammatory cells were immunopositive to EGF. The ARPCs in the epithelia were 41.6%±10.8% and 43.8%±8.0% in the CRS group and the CRS/NP group, respectively. No statistically significant difference was found between these 2 groups (P > .05) (Table 2). Weak to absent staining of EGF was found in the control group (Figure 5). The ARPC in the epithelia was 5.2%±4.5%, which is statistically significantly less than that of the CRS and CRS/NP groups (P < .01) (Table 2). No specific localization occurred in the negative controls, which confirmed the specificity of the EGFR and EGF antibodies.

Table 1. Immunolocalization of Epidermal Growth Factor Receptor (EGFR) and EGF in Sinus Mucosa

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>EGFR/EGFa</th>
<th>Group</th>
<th>No.</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>χ²</th>
<th>P Value</th>
<th>χ²</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciliated</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>9/4</td>
<td>1/5</td>
<td>0/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>3/0</td>
<td>7/0</td>
<td>0/3</td>
<td>0/7</td>
<td>7.1/14.5</td>
<td>.008/ <.001</td>
<td>...</td>
<td>0/0/2</td>
<td>>.99/.65</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>3/0</td>
<td>7/0</td>
<td>0/4</td>
<td>0/6</td>
<td>7.1/4.0</td>
<td>.008/ <.001</td>
<td>0/0/2</td>
<td>>.99/.65</td>
<td></td>
</tr>
<tr>
<td>Nonciliated</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>9/5</td>
<td>1/5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>9/0</td>
<td>1/0</td>
<td>0/4</td>
<td>6/0</td>
<td>0.0/15.5</td>
<td>>.99/ <.001</td>
<td>...</td>
<td>0/0/1</td>
<td>>.99/71</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>9/0</td>
<td>1/0</td>
<td>0/3</td>
<td>6/0</td>
<td>0.0/14.1</td>
<td>>.99/ <.001</td>
<td>0/0/1</td>
<td>>.99/71</td>
<td></td>
</tr>
<tr>
<td>Goblet</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>6/10</td>
<td>3/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>0/9</td>
<td>0/1</td>
<td>3/0</td>
<td>7/0</td>
<td>14.9/1.0</td>
<td><.001/ .32</td>
<td>...</td>
<td>0/0/0</td>
<td>>.99/.99</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>0/9</td>
<td>0/1</td>
<td>3/0</td>
<td>7/0</td>
<td>14.9/1.0</td>
<td><.001/ .32</td>
<td>0/0/0</td>
<td>>.99/.99</td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>5/10</td>
<td>4/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>0/9</td>
<td>2/1</td>
<td>7/0</td>
<td>1/0</td>
<td>10.2/1.0</td>
<td><.001/ .32</td>
<td>...</td>
<td>0/0/0</td>
<td>>.99/.99</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>0/9</td>
<td>1/0</td>
<td>5/0</td>
<td>0/5</td>
<td>13.7/1.0</td>
<td><.001/ .32</td>
<td>4/0/0</td>
<td>>.99/.99</td>
<td></td>
</tr>
<tr>
<td>Inflammatory</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>8/9</td>
<td>2/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>9/0</td>
<td>1/2</td>
<td>0/6</td>
<td>0/2</td>
<td>0.4/14.9</td>
<td>.54/ <.001</td>
<td>...</td>
<td>0/0/0</td>
<td>>.99/.99</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>9/0</td>
<td>1/0</td>
<td>6/0</td>
<td>0/2</td>
<td>0.4/14.9</td>
<td>.54/ <.001</td>
<td>0/0/0</td>
<td>>.99/.99</td>
<td></td>
</tr>
<tr>
<td>Submucosal glandular</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>7/9</td>
<td>3/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>...</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>CRS</td>
<td>10</td>
<td>1/4</td>
<td>8/6</td>
<td>1/0</td>
<td>0/0</td>
<td>7.1/5.2</td>
<td>.008/ .02</td>
<td>...</td>
<td>0/0/0</td>
<td>>.99/.99</td>
</tr>
<tr>
<td>CRS/NP</td>
<td>10</td>
<td>1/4</td>
<td>8/6</td>
<td>1/0</td>
<td>0/0</td>
<td>7.1/5.2</td>
<td>.008/ .02</td>
<td>0/0/0</td>
<td>>.99/.99</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CRS, chronic rhinosinusitis; MH, Mantel-Haenszel χ² test; NP, nasal polyposis.

a Indicates negative finding; +, weakly positive; ++, moderately positive; and ++++, strongly positive.

b Control group compared with the CRS group and the CRS/NP group, respectively.

c The CRS group compared with the CRS/NP group.

d The ARPCs in the epithelia were 52.3%±4.6% and 56.3%±6.6% in the CRS group and the CRS/NP group, respectively. No statistically significant difference was found between these 2 groups (P > .05) (Table 2). In the control group, EGFR immunoreactivity was barely expressed (Figure 4), and the ARPC in the epithelia (5.9%±4.3%) was statistically significantly decreased compared with that of the CRS and CRS/NP groups (P < .01) (Table 2). The EGF immunofluorescent analysis showed strong expression in the sinus epithelial cells of the CRS and CRS/NP samples (Figure 5), including ciliated and nonciliated epithelial cells. There was no positive staining in epithelial goblet cells, but some inflammatory cells were immunopositive

EOSINOPHIL COUNTING

The eosinophils in the subepithelial connective tissue were counted, and results showed that the numbers of eosin-
Mucoid and mucopurulent rhinorrhea is one of the major clinical features in CRS and CRS/NP. Few treatments are available to alleviate this problem. However, the finding of EGFR cascade involvement, which can promote the secretion of mucins, offers a therapeutic possibility. Before this study, findings of EGFR gene expression in CRS and CRS/NP compared with that of the lower respiratory tract were obscure. We postulated that the EGFR gene is up-regulated in the mucosa of patients with CRS and CRS/NP.

To distinguish patients with CRS from patients with CRS/NP, we counted the eosinophils in the subepithelial connective tissue. Results showed that eosinophils were statistically significantly increased in the CRS/NP group compared with that in the CRS group (P < .01), which confirmed that these 2 groups had pathologically distinct disorders.

In our study, RT-PCR demonstrated strong expression of EGFR mRNA in the sinus mucosa of patients with CRS and CRS/NP, whereas there was low expression of EGFR mRNA in the control subjects. Immunolocalization of EGFR using immunofluorescent staining demonstrated that the EGFR protein was primarily expressed in epithelial goblet cells and basal cells and was weakly expressed in ciliated sinus mucosal cells. No statistically significant difference was seen in the ARPCs of EGFR-stained epithelia between the CRS group and the CRS/NP group. However, statistically significant differences were found between the control group and the other 2 groups. Results of RT-PCR coincided with immunostaining data of EGFR, indicating that EGFR mRNA expression was consistent with EGFR expression in the sinus mucosa of these 3 groups.

Epithelial goblet cells are the main secretory cells in the airway tract, which can synthesize different mucins such as MUC5AC and MUC2. In our study, EGFR was strongly expressed in goblet cells, which confirms that the EGFR cascade is involved in the regulation of mucus production. In addition, the findings of hyperplasia and metaplasia of goblet cells in the mucosa of CRS and CRS/NP samples (demonstrated in the present study using HE staining) suggest an acceleration of mucus secretion. In a previous study, EGFR immunoreactivity was found in basal cells of bronchial epithelium using immunoelectron microscopy. We also observed a strong expression of EGFR in basal cells of the mucosa in patients with CRS and CRS/NP in this study. Therefore, our data for immunolocalization of EGFR in sinus epithelium are in accord with previously published data for bronchial tissue. Different findings were obtained by Burgel.
et al., who addressed the expression of EGFR in nasal polyps, which are not considerably different from the sinus-derived tissues investigated in the present study. There are 2 possible explanations for such differences. (1) Mucosa of the maxillary ostium, which locates at the center of the ostiomeatal complex, may have a more severe inflammatory reaction compared with that of polyp tissues. (2) A large number of inflammatory cells and EGFR ligands more easily activate the EGFR signal through ligand-dependent and ligand-independent pathways. Results similar to our findings were reported by Lee et al., who used the same tissue samples as ours.

In addition to EGFR, we studied the expression of its ligand, EGF, using immunofluorescent staining. Epidermal growth factor is synthesized as a transmembrane precursor protein in which the mature soluble growth factor sequence is located in the extracellular domain of the molecule. The membrane-bound precursor and the mature solubilized EGF are able to bind to the surface receptor (EGFR). Previous investigations have demonstrated EGF immunoreactivity in the glandular serous acini of rat and human nasal cavities. In human lung tissue, EGF was found in many inflammatory cells, including macrophages, eosinophils, and T lymphocytes. In the present study, in contrast to the expression of EGFR, EGF was not found in goblet cells but was found in CRS and CRS/NP sinus epithelial cells, as well as in some inflammatory cells. However, EGF was weakly expressed in the epithelial cells of normal sinus mucosa. We found similar results among the 3 groups when comparing the ARPCs of EGF and EGFR epithelia. These results demonstrate that EGFR and EGF are coexpressed in the sinus mucosa of patients with CRS and CRS/NP. No statistically significant difference between EGFR and EGF expression was found in the sinus mucosa of the CRS and CRS/NP groups. This indicates that EGFR and EGF may have a common role in the pathogenesis of CRS and CRS/NP.

The activation of EGFR signaling may involve 2 different pathways, ligand-dependent and ligand-independent EGFR tyrosine phosphorylation. In the present study, EGF, which was strongly expressed in the mucosa of the CRS and CRS/NP groups, may activate the EGFR signaling pathway by binding EGFR in the extracellular domain. In addition, activated neutrophils can initiate the EGFR signaling pathway by ligand-independent EGFR tyrosine phosphorylation via the production of oxidative stress and the release of oxygen free radicals. Other inflammatory cells such as macrophages and eosinophils recruited to the airway epithelium in inflammatory respiratory diseases express EGF ligands, suggesting that interactions between these cells and epithelial cells could result in ligand-dependent activation of EGFR signaling cascades. Therefore, we believe that the 2 pathways of EGFR activation participate in the pathogenesis of CRS and CRS/NP.

In summary, our study shows that EGFR is upregulated in the sinus mucosa of patients with CRS and CRS/NP, suggesting the potential role of the EGFR cascade for mucus production in nasal epithelium. Further study of the EGFR cascade is required to define its role in activation of nasal epithelium in response to inhaled...
irritants, toxins, infection, and inflammation, as well as potential treatment for mucous hypersecretion diseases by blocking the EGFR cascade.

Submitted for Publication: June 14, 2006; final revision received September 20, 2006; accepted October 8, 2006.

Correspondence: Chun Quan Zheng, MD, Department of Otorhinolaryngology—Head and Neck Surgery, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, China (cqqzheng@online.sh.cn).

Author Contributions: Drs Ding and Zheng had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Ding and Zheng. Acquisition of data: Ding and Zheng. Analysis and interpretation of data: Ding, Zheng, and Bagga. Drafting of the manuscript: Ding and Zheng. Critical revision of the manuscript for important intellectual content: Ding and Bagga. Statistical analysis: Ding. Obtained funding: Bagga.

Financial Disclosure: None reported.

Funding/SUPPORT: This study was partially funded by grant 30328029 from the National Science Foundation of China (Ms Bagga).

REFERENCES