Ocular Findings in Children With Congenital Sensorineural Hearing Loss

Derek D. Mafong, MD; Steven D. Pletcher, MD; Creig Hoyt, MD; Anil K. Lalwani, MD

Objective: To examine the yield of ophthalmologic examination in the diagnostic workup of unexplained sensorineural hearing loss (SNHL) in children.


Setting: Tertiary care university hospital.

Participants: Children 18 years or younger presenting with unilateral or bilateral SNHL.

Outcome Measures: Ophthalmologic findings.

Results: Of the 49 patients with SNHL for whom ophthalmologic examination results were available, 15 (31%) had ocular abnormalities. Hyperopia was the most common abnormality, present in 7 patients (46%). Myopia was found in 2 patients (13%) and astigmatism in 1 (2%). Two other patients had multiple abnormalities: one with hyperopia and astigmatism and the other with myopia and astigmatism. The remaining 4 patients had the following abnormalities: Lisch nodules, esotropia, ptosis, and allergic conjunctivitis. As a result of ophthalmologic examination, 5 interventions were performed in 4 children: 2 children received prescription lenses; 2 children underwent surgery; and 1 child was treated with eyedrops. Ophthalmologic examination in 2 children contributed to the diagnosis of a hearing loss syndrome.

Conclusion: In children with SNHL, ophthalmologic examination is useful in evaluating visual acuity and determining or confirming the cause of hearing impairment.


Estimates of the prevalence of permanent, moderate to severe bilateral sensorineural hearing loss (SNHL) fall between 1 and 2 per 1000 live births.1,2 Significant bilateral hearing loss during the first years of life can impede adequate development of literacy skills, school achievement, and social or emotional development.3,4 Studies of hearing-impaired populations indicate a genetic basis in approximately 50% of all hearing loss.3,5 Identifying syndromic causes of hearing impairment involves other organ systems and occurs as a syndrome.4 In addition, abnormal ocular findings are associated with certain common deafness syndromes (Table 1). Since visual and auditory channels are responsible for more than 95% of information acquisition,6 it is crucial to maximize visual function in children with SNHL. In this report, we review our experience with the utility of routine ophthalmologic examination in the diagnostic evaluation of children with unexplained SNHL.
We conducted a retrospective analysis of children with unidentified causes of SNHL seen between 1998 and 2000 at the University of California, San Francisco Medical Center. The study was approved by the Committee on Human Research. Patients with SNHL attributed to recurrent otitis media, maternal cytomegalovirus, rubella, and toxoplasmosis were not included in this group. The following clinical information was retrieved from clinical notes, hospital charts, and outside records and recorded on a clinical data sheet: demographic information; pertinent prenatal, perinatal, and postnatal factors (eg, gestational diabetes, low birth weight); family history of hearing loss; CT and magnetic resonance imaging (MRI) findings; more importantly, their radiologic studies were available for review (Table 2). Forty-six of these patients had CT and 2 had MRI results available; 1 patient did not have radiologic studies. Of the 15 patients with ocular abnormalities, 5 (33%) had abnormal radiologic findings; bilateral LVA was the most common finding (n=2). Of the 7 patients with hyperopia, 6 had CT scans; normal ear anatomy was most common (n=4) followed by hypoplastic cochlea (n=1) and lateral semicircular canal dysplasia (n=1). One of the 2 patients with myopia had bilateral LVA. The 2 patients with multiple findings had normal CT findings. Of the patients with Lisch nodules, esotropia, ptosis, and allergic conjunctivitis, the patient with Lisch nodules showed bilateral LVA, while the remaining radiologic studies were normal. The MRI in the patient with esotropia showed butterfly vertebrae.

As a result of findings on ophthalmologic examination, 4 patients underwent medical or surgical intervention. Prescription lenses were given to 2 myopic children, one of whom also underwent an operative ptosis repair. A bilateral medial rectus recession surgery was performed in a child with esotropia. Another child was given anti-inflammatory drops for an allergic conjunctivitis.

Ophthalmologic consultation in children with SNHL serves 2 goals. The first goal is to determine visual acuity and identify visual deficits requiring intervention. Normalization of visual acuity is critical in these patients who already have auditory sensory deficit and therefore have greater dependence on visual input. Early identification of children with dual sensory deficits allows early intervention and maximization of quality sensory input critical for development. The second goal is to aid in the identification of hereditary hearing loss syndromes that are associated with ocular findings. Early identification of syndromes gives patients and their families the comfort of a diagnosis, may allow identification of other syndrome-associated abnormalities, and will have implications for

Table 1. Ocular Findings in Hereditary Deafness Syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Ocular Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosomal dominant</td>
<td>Lisch nodules of iris and optic gliomas</td>
</tr>
<tr>
<td>Neurofibromatosis type 1</td>
<td>Juvenile posterior cataracts</td>
</tr>
<tr>
<td>Neurofibromatosis type 2</td>
<td>Blue sclera</td>
</tr>
<tr>
<td>Osteogenesis imperfecta</td>
<td>Myopia, retinal detachment, cataracts</td>
</tr>
<tr>
<td>Stickler syndrome</td>
<td>Coloboma of lower eyelids, downward</td>
</tr>
<tr>
<td>Treacher Collins syndrome</td>
<td>Slanting palpebral fissures</td>
</tr>
<tr>
<td>Waardenburg syndrome</td>
<td>Heterochromia irides, lateral displacement of medial canthus</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>Retinitis pigmentosa</td>
</tr>
<tr>
<td>Usher syndrome</td>
<td>Optic atrophy</td>
</tr>
<tr>
<td>Wolfram syndrome</td>
<td>Congenital or progressive blindness, pseudoglioma</td>
</tr>
<tr>
<td>Sex-linked disorders</td>
<td>Opacification, ocular degeneration</td>
</tr>
<tr>
<td>Norrie syndrome</td>
<td>resulting in microphthalmia</td>
</tr>
<tr>
<td>Mitochondrial disorders</td>
<td>Progressive external ophthalmoplegia and</td>
</tr>
<tr>
<td>Kearns-Sayre syndrome</td>
<td>retinopathy</td>
</tr>
<tr>
<td>Autoimmune disorders</td>
<td>Intestinal keraatitis</td>
</tr>
</tbody>
</table>

©2002 American Medical Association. All rights reserved.
In 1987, Fillman et al. examined 210 hearing-impaired patient population and definition of what is abnormal. In these studies, there is likely secondary to differences in methodology. This discrepancy may be explained by the use of different diagnostic tools and criteria.

Other investigators have proposed measurement of corneal-retinal potentials via ERG testing as part of the routine ophthalmologic evaluation of children with SNHL to identify Usher syndrome. The ERG is a noninvasive test that has the potential to identify retinitis pigmentosa before the onset of fundoscopic and visual abnormalities. Mets et al. found that 5 (10%) of 48 children with severe to profound preverbal SNHL screened with ERG were found to have Usher syndrome. It is clear that early detection of ocular abnormalities can lead to timely medical and surgical interventions.

A weakness of the present study is the results of ophthalmologic examinations were unavailable for many of our patients. Many of our patients live far from our medical center and were examined by their local ophthalmologists. The results of these examinations were often unavailable. It is unclear how many of our patients, all of whom were referred for ophthalmologic examination, actually were examined by an ophthalmologist. This introduces the possibility of selection bias. Despite this limitation, we believe that our data support routine ophthalmologic examination for children with congenital SNHL.

In addition to ophthalmologic examination, the clinical evaluation of children with congenital SNHL at our institution also includes laboratory testing and imaging studies. Abnormal findings in traditional laboratory and ancillary testing for children with congenital SNHL (complete blood cell count with platelets, thyroid function tests, microscopic and macroscopic urinalysis, and electrocardiogram) have proven to be quite uncommon. On the other hand, there is a high incidence of abnormal findings on CT scan in patients with congenital SNHL. In the earlier review of this cohort, radiologic abnormalities were present in 38 (39%) of 97 cases, with 33 CT scans (37%) and 7 MRIs (33%) identified as abnormal. The most common radiologic abnormality was LVA. Likewise, evaluation of patients with ocular findings turned up a similar incidence of radiologic abnormality. In other words, in individuals with ocular findings, radiologic abnormality is not more or less likely than in patients with normal findings of eye examination.

Newer, genetically based diagnostic tests, such as CX26 mutation testing, are becoming available that may change our evaluation of children with congenital SNHL. Connexin 26 (CX26) is a gap junction protein believed to have a role in 50% of patients with congenital hearing loss. CX26 is ideal for genetic testing: it not only accounts for a large fraction of childhood SNHL, but it is small, and there are 2 common prevalent mutations (35delG and 167delT). Ocular findings have not been reported in patients with CX26 mutations. Therefore, it may be that as genetic testing becomes routine, normal CX26 results may obviate the need for laboratory, radiologic, and ophthalmologic evaluation. However, until clear genotype-phenotype correlation data are fully available, children with congenital SNHL should undergo ophthalmologic examination to allow early detection and treat-
ment of ocular abnormalities and identification of hereditary hearing loss syndromes.

Accepted for publication May 20, 2002.

This study was presented at the American Academy of Pediatrics National Conference and Exhibition, San Francisco, Calif, October 21, 2001.

Corresponding author and reprints: Anil K. Lalwani, MD, Division of Otolaryngology–Neurotology, Skull Base Surgery, Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, 400 Parnassus Ave, A730, San Francisco, CA 94143-0342 (e-mail: lalwani@itsa.ucsf.edu).

REFERENCES


CME Announcement

CME Hiatus: July Through December 2002

CME from JAMA/Archives will be suspended between July and December 2002. Beginning in early 2003, we will offer a new online CME program that will provide many enhancements:

- Article-specific questions
- Hypertext links from questions to the relevant content
- Online CME questionnaire
- Printable CME certificates and ability to access total CME credits

We apologize for the interruption in CME and hope that you will enjoy the improved online features that will be available in early 2003.